Citation:
If you use Thinopyrum elongatum (D-3458) genome, transcripts, gene and protein sequences,please cite:
Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X,Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, HaoY, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS,Bai G, Nevo E, Gao C, Ohm H, Kong L (2020) Horizontal Gene Transfer of Fhb7 from Fungus Underlies Fusarium Head Blight Resistance in Wheat. Science:eaba5435
doi:10.1126/science.aba5435

If you use Wild emmer genome, transcripts, gene and protein sequences, please cite:
Avni, R., Nave, M., Barad, O., Baruch, K., Twardziok, S.O., Gundlach, H., et al. (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346), 93-97.
doi:10.1126/science.aan0032

If you use Zang1817 genome, transcripts, gene and protein sequences, please cite:
Weilong Guo*, Mingming Xin*, Zihao Wang*, Yingyin Yao,Zhaorong Hu, Wanjun Song, Kuohai Yu, Yongming Chen, Xiaobo Wang, Panfeng Guan, RudiAppels, Huiru Peng#, Zhongfu Ni#, Qixin Sun#. (2020) Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nature Communications.
doi:10.1038/s41467-020-18738-5

If you use TGACv1 sequences, please cite:
Clavijo, B.J., Venturini, L., Schudoma, C., Accinelli, G.G., Kaithakottil, G., Wright, J, et al. (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27(5), 885-896.
doi:10.1101/gr.217117.116

If you use 10+ genome sequences, please cite:
Walkowiak, S., Gao, L., Monat, C. et al. Multiple wheat genomes reveal global variationin modern breeding. Nature (2020)
doi:10.1038/s41586-020-2961-x

If you use qingke genome, transcripts, gene and protein sequences, please cite:
Dai, F., Wang, X., Zhang, X.Q., Chen, Z., Nevo, E., Jin, G., et al. (2018) Assembly andanalysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley. Plant Biotechnol J 16(3), 760-770.
doi:10.1111/pbi.12826

If you use Chinese Spring genome, transcripts, gene and protein sequences (labeling with IWGSC), please cite:
International Wheat Genome Sequencing, C., investigators, I.R.p., Appels, R., Eversole, K, Feuillet, C., Keller, B., et al. (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361 (6403).
doi:10.1126/science.aar7191

If you use Triticum urartu genome, transcripts, gene and protein sequences, please cite:
Ling, H.Q., Ma, B., Shi, X., Liu, H., Dong, L., Sun, H., et al. (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557(7705), 424-428.
doi:10.1038s41586-018-0108-0

If you use TGACv2 sequences, please cite:
Lu, F.H., McKenzie, N., Kettleborough, G., Heavens, D., Clark, M.D., and Bevan, M.W.(2018) Independent assessment and improvement of wheat genome sequence assemblies using Fosill jumping libraries. Gigascience 7(5).
doi:10.1093/gigascience/giy053

If you use Aegilops tauschii (cv. AL8/78) genome, transcripts, gene and protein sequences, please cite:
Luo, M.C., Gu, Y.Q., Puiu, D., Wang, H., Twardziok, S.O., Deal, K.R., et al. (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 55(7681), 498-502.
doi:10.1038/nature24486

If you use Durum wheat genome, transcripts, gene and protein sequences, please cite:
Maccaferri, M., Harris, N.S., Twardziok, S.O., Pasam, R.K., Gundlach, H., Spannagl, M.,et al. (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51(5), 885-895.
doi:10.1038/s41588-019-0381-3

If you use barley genome, transcripts, gene and protein sequences, please cite:
Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S.O., Wicker, T., et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544 (7651), 427-433.
doi:10.1038/nature22043

If you use barley genome of Golden Promise, please cite:
Schreiber M, Mascher M, Wright J, et al. (2020) A Genome Assembly of the Barley 'Transformation Reference' Cultivar Golden Promise. G3(Bethesda).
doi:10.1534/g3.119.401010

If you use cv. Weigning rye genome,gene and protein sequences, please cite:
Li, G., Wang, L., Yang, J. et al. (2021) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet
doi:10.1038/s41588-021-00808-z

If you use Wild emmer genome V2, gene and protein sequences, please cite:
Zhu, T., Wang, L., Rodriguez, J.C., Deal, K.R., Avni, R., Distelfeld, A., et al. (2019) Improved Genome Sequence of Wild Emmer Wheat Zavitan with the Aid of Optical Maps. G3 (Bethesda) 9(3), 619-624.
doi:10.1534/g3.118.200902

If you use pacbio sequence of Chinese Spring, please cite:
Zimin, A.V., Puiu, D., Hall, R., Kingan, S., Clavijo, B.J., and Salzberg, S.L. (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11), 1-7.
doi:10.1093/gigascience/gix097

If you use genome sequence of Chinese Spring (Triticum_4.0), please cite:
Michael Alonge, Alaina Shumate, Daniela Puiu, Aleksey Zimin, Steven L. Salzberg. (2020) Chromosome-Scale Assembly of the Bread Wheat Genome Reveals Thousands of Additional Gene Copies. GENETICS 216.
doi:10.1101/2020.04.06.028746

If you use genomics sequence of Cadenza_EIv1.1, Claire_EIv1.1, Paragon_EIv1.1Robigus_EIv1.1 and Kronos_EIv1.1, please cite:
https://opendata.earlham.ac.uk/wheatunder_license/

If you use Chinese Spring genome v2.1, transcripts, gene and protein sequences, pleasecite:
Zhu, T., Wang, L., Rimbert, H., Rodriguez, J.C., Deal, K.R., De Oliveira, R., Choulet, F, Keeble‐Gagnère, G., Tibbits, J., Rogers, J., Eversole, K., Appels, R., Gu, Y.Q.,Mascher, M., Dvorak, J. and Luo, M.‐C. (2021), Optical maps refine the bread wheat Triticum aestivum cv Chinese Spring genome assembly. The Plant Journal.
doi:10.1111/tpj.15289

If you use BaRTv1.0 transcripts, please cite:
Rapazote-Flores, P., Bayer, M., Milne, L. et al. BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics 20, 968 (2019)
doi:10.1186/s12864-019-6243-7

If you use Fielder genome , please cite:
Kazuhiro Sato, Fumitaka Abe, Martin Mascher, Georg Haberer, Heidrun Gundlach, Manuel Spannagl, Kenta Shirasawa, Sachiko Isobe, Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Research 2021 dsab008.
doi:10.1093/dnares/dsab008

If you use rye Lo7 genome , gene and protein sequences, please cite:
Rabanus-Wallace, M.T., Hackauf, B., Mascher, M. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 53, 564–573 (2021).
doi:10.1038/s41588-021-00807-0

If you use Aegilops tauschii genome assembly Aet v5.0, please cite:
Wang L, Zhu T, Rodriguez JC, Deal KR, Dubcovsky J, McGuire PE, Lux T, Spannagl M, Mayer KFX, Baldrich P, Meyers BC, Huo N, Gu YQ, Zhou H, Devos KM, Bennetzen JL, Unver T, Budak H, Gulick PJ, Galiba G, Kalapos B, Nelson DR, Li P, You FM, Luo MC, Dvorak J. Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3 (Bethesda). 2021 Sep 13:jkab325.
doi:10.1093/g3journal/jkab325

If you use genes, proteins and genomes of Aegilops speltoides (cv. AEG-9674-1), Aegilops longissima (cv. AEG-6782-2) and Aegilops sharonensis (cv. AS_1644), please cite:
Avni, R., Lux, T., Minz-Dub, A., Millet, E., Sela, H., Distelfeld, A., Deek, J., Yu, G., Steuernagel, B., Pozniak, C., Ens, J., Gundlach, H., Mayer, K.F.X., Himmelbach, A., Stein, N., Mascher, M., Spannagl, M., Wulff, B.B.H. and Sharon, A. (2022), Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J.
doi:10.1111/tpj.15664

If you use genes, proteins and genomes of Aegilops bicornis (cv. TB01), Aegilops longissima (cv. TL05), Aegilops searsii (cv. TE01), Aegilops sharonensis (cv. TH02) and Aegilops speltoides (cv. TS01), please cite:
Li LF, Zhang ZB, Wang ZH, Li N, Sha Y, Wang XF, Ding N, Li Y, Zhao J, Wu Y, Gong L, Mafessoni F, Levy AA, Liu B. (2022), Genome sequences of the five Sitopsis species of Aegilops and the origin of polyploid wheat B-subgenome. Mol Plant.
doi:10.1016/j.molp.2021.12.019

If you use genes, proteins and genome of Kariega, please cite:
Athiyannan, N., Abrouk, M., Boshoff, W.H.P. et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat Genet 54, 227–231 (2022).
doi:10.1038/s41588-022-01022-1

If you use genes, proteins and genome of Renan, please cite:
Jean-Marc Aury, Stefan Engelen, Benjamin Istace, Cécile Monat, Pauline Lasserre-Zuber, Caroline Belser, Corinne Cruaud, Hélène Rimbert, Philippe Leroy, Sandrine Arribat, Isabelle Dufau, Arnaud Bellec, David Grimbichler, Nathan Papon, Etienne Paux, Marion Ranoux, Adriana Alberti, Patrick Wincker, Frédéric Choulet. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding, GigaScience, Volume 11, 2022, giac034.
doi:10.1093/gigascience/giac034

If you use genome of Attraktion, please cite:
Sandip M. Kale, Albert W. Schulthess, Sudharsan Padmarasu, Philipp H. G. Boeven, Johannes Schacht, Axel Himmelbach, Burkhard Steuernagel, Brande B. H. Wulff, Jochen C. Reif, Nils Stein, Martin Mascher. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnology Journal, 2022.
doi:10.1111/pbi.13843

If you use Am. muticum draft genome, please cite:
Benedict Coombes,John P. Fellers,Surbhi Grewal,Rachel Rusholme-Pilcher,Stella Hubbart-Edwards,Cai-yun Yang,Ryan Joynson,Ian P. King,Julie King,Anthony Hall. Whole genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/Ambylopyrum muticum introgression lines. Plant Biotechnology Journal, 2022.
doi:10.1111/pbi.13859

If you use Kenong9204 genome, please cite:
Xiaoli Shi, Fa Cui, Xinyin Han, Yilin He, Long Zhao, Na Zhang, Haidong Zhu, Zhexin Liu, Bin Ma, Shusong Zheng, Wei Zhang, Jiajia Liu, Xiaoli Fan, Yaoqi Si, Shuiquan Tian, Jianqing Niu, Huilan Wu, Xuemei Liu, Zhuo Chen, Deyuan Meng, Hao Zhang, Xiaoyan Wang, Liqiang Song, Lijing Sun, Jie Han, Hui Zhao, Jun Ji, Zhiguo Wang, Xiaoyu He, Ruilin Li, Xuebin Chi, Chengzhi Liang, Beifang Niu, Jun Xiao, Junming Li, Hong-Qing Ling. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen use efficiency in the wheat cultivar Kenong 9204. Molecular Plant, 2022.
doi:10.1016/j.molp.2022.07.008

If you use Triticum monococcum genomes TA299 and TA10622, please cite:
Hanin Ibrahim Ahmed, Matthias Heuberger, Adam Schoen, Dal-Hoe Koo, Jesus Quiroz-Chavez, Laxman Adhikari, John Raupp, Stéphane Cauet, Nathalie Rodde, Charlotte Cravero, Caroline Callot, Gerard R. Lazo, Nagarajan Kathiresan, Parva K. Sharma, Ian Moot, Inderjit Singh Yadav, Lovepreet Singh, Gautam Saripalli, Nidhi Rawat, Raju Datla, Naveenkumar Athiyannan, Ricardo H. Ramirez-Gonzalez, Cristobal Uauy, Thomas Wicker, Vijay K. Tiwari, Michael Abrouk, Jesse Poland& Simon G. Krattinger. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature, 2023.
doi:10.1016/j.molp.2022.07.008

If you use AK58 genome, transcripts, gene and protein sequences,please cite:
Jia J, Zhao G, Li D, Wang K, Kong C, Deng P, Yan X, Zhang X, Lu Z, Xu S, Jiao Y, Chong K, Liu X, Cui D, Li G, Zhang Y, Du C, Wu L, Li T, Yan D, Zhan K, Chen F, Wang Z, Zhang L, Kong X, Ru Z, Wang D, Gao L. Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement. Mol Plant. 2023
doi:10.1016/j.molp.2023.10.015

If you use Dasypyrum villosum genome, transcripts, gene and protein sequences,please cite:
Zhang X, Wang H, Sun H, Li Y, Feng Y, Jiao C, Li M, Song X, Wang T, Wang Z, Yuan C, Sun L, Lu R, Zhang W, Xiao J, Wang X. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. Mol Plant. 2023
doi:10.1016/j.molp.2022.12.021

If you use Triticum monococcum PI306540 genome, gene and protein sequences,please cite:
Ahmed, H.I., Heuberger, M., Schoen, A. et al. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature. 2023
doi:10.1038/s41586-023-06389-7

If you use Triticum timopheevii PI94760 genome, transcripts, gene and protein sequences,please cite:
Surbhi Grewal, Cai-yun Yang, Duncan Scholefield, Stephen Ashling, Sreya Ghosh, View ORCID ProfileDavid Swarbreck, Joanna Collins, Eric Yao, Taner Z. Sen, Michael Wilson, Levi Yant, Ian P. King, Julie King.Chromosome-scale genome assembly of bread wheat’s wild relative Triticum timopheevii.bioRxiv.2024
doi:10.1101/2024.01.16.575864

If you use Chuanmai104 genome, gene and protein sequences,please cite:
Liu, Z., Yang, F., Deng, C. et al. Chromosome-level assembly of the synthetic hexaploid wheat-derived cultivar Chuanmai 104.Sci Data.2024
doi:10.1038/s41597-024-03527-2

If you use Ae.speltoides (Y2032) genome, gene and protein sequences,please cite:
Yang Y, Cui L, Lu Z, Li G, Yang Z, Zhao G, Kong C, Li D, Chen Y, Xie Z, Chen Z, Zhang L, Xia C, Liu X, Jia J, Kong X. Genome sequencing of Sitopsis species provides insights into their contribution to the B subgenome of bread wheat.Plant Commun.2023
doi:10.1016/j.xplc.2023.100567

If you use E.sibiricus cultivar GaomuNo.1 genome, gene and protein sequences,please cite:
Shen, W., Liu, B., Guo, J. et al. Chromosome-scale assembly of the wild cereal relative Elymus sibiricus. Sci Data.2024
doi:10.1038/s41597-024-03622-4

If you use Aegilops umbellulata TA1851 genome,please cite:
Wang, Y., Abrouk, M., Gourdoupis, S. et al. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat Genet ,2023.
doi:10.1038/s41588-023-01401-2

If you use Aegilops umbellulata PI554389 genome, transcripts, gene and protein sequences,please cite:
Jatinder Singh, Santosh Gudi, Peter J. et al. Genomes of Aegilops umbellulata provide new insights into unique structural variations and genetic diversity in the U-genome for wheat improvement. Plant Biotechnology Journal.2024
doi:10.1111/pbi.14470

If you use Aegilops tauschii TA10171 genome, gene and protein sequences,please cite:
Cavalet-Giorsa, E., González-Muñoz, A., Athiyannan, N. et al. Origin and evolution of the bread wheat D genome. Nature ,2024.
doi:10.1038/s41586-024-07808-z

If you use Aegilops tauschii TA1675 genome, gene and protein sequences,please cite:
Cavalet-Giorsa, E., González-Muñoz, A., Athiyannan, N. et al. Origin and evolution of the bread wheat D genome. Nature ,2024.
doi:10.1038/s41586-024-07808-z

If you use Aegilops tauschii TA2576 genome, gene and protein sequences,please cite:
Cavalet-Giorsa, E., González-Muñoz, A., Athiyannan, N. et al. Origin and evolution of the bread wheat D genome. Nature ,2024.
doi:10.1038/s41586-024-07808-z

If you use CWI86942 genome, gene and protein sequences,please cite:
Cavalet-Giorsa, E., González-Muñoz, A., Athiyannan, N. et al. Origin and evolution of the bread wheat D genome. Nature ,2024.
doi:10.1038/s41586-024-07808-z

If you use Zhoumai16(ZM16) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Yangmai158(YM158) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Xiaoyan6(XY6) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Xinong6028(XN6028) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Shi4185(S4185) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0


If you use Ningchun4(NC4) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0


If you use Mazhamai(MZM) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Kuofan11(KF11) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0


If you use Jinmai47(JM47) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Jimai22(JM22) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Handan6172(HD6172) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Chuanmai42(CM42) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Beijing8(BJ8) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Aimengniu(AMN) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Abbondanza(Abo) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Zhengmai366(ZM366) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Zhoumai22(ZM22) genome, gene and protein sequences,please cite:
Jiao, C., Xie, X., Hao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature ,2024.
doi:10.1038/s41586-024-08277-0

If you use Zhou8425B(Z8425B) genome, gene and protein sequences,please cite:
Li, G., Ren, Y., Yang, Y., Chen, S., Zheng, J., Zhang, X., Yin, G. Plant Communications.,2024.
doi:10.1016/j.xplc.2024.101222

If you use Aegilops comosa PI551049 genome, gene and protein sequences,please cite:
Li, H., Rehman, S.u., Song, R. et al. Chromosome-scale assembly and annotation of the wild wheat relative Aegilops comosa. Sci Data , 2024.
doi:10.1038/s41597-024-04346-1